A Review Of Trend Advanced Welding Process And Welding Technology In Industries

  • Ahmad Salleh Buang Mr.
  • Mohd Sapuwan
  • Muhammad Zuraidi
Keywords: Fusion Welding, Solid-state welding, Advanced Welding, Cost effectiveness, Safety

Abstract

This paper reviews the current trend of advanced welding processes and technology used nowadays in various industries. It reveals the importance of welding, the classification of welding processes, and the selection and application of welding processes in industries. The processes of fusion welding and solid-state welding have been discussed in this paper. Conventional welding processes such as gas metal arc welding (GMAW), gas tungsten arc welding (GTAW), resistance welding, and friction welding are briefly explained. Advanced welding techniques and trends have also been highlighted, such as plasma arc welding, laser beam welding, electron beam welding, and ultrasonic welding. The main objectives for welding process development were determined, such as the need to improve the total cost effectiveness, concerns over safety and the welding environment, and the potential shortage of skilled operators. The advantages and disadvantages of advanced welding have also been explained by other researchers in their research.

References

Kalpakjian, S. (2001). Manufacturing Engineering and Technology (Vol. 7): Pearson Education South Asia.

Norrish, J. (2006). Advanced welding processes Technologies and process control: Woodhead Publishing Limited.

Ibrahim, I. A., Mohamat, S. A., Amir, A., & Ghalib, A. (2012). The Effect of Gas Metal Arc Welding (GMAW) Processes on Different Welding Parameters. Procedia Engineering, 41, 1502-1506.

Lu, S. P., Qin, M. P., & Dong, W. C. (2013). Highly efficient TIG welding of Cr13Ni5Mo martensitic stainless steel. Journal of Materials Processing Technology, 213(2), 229-237.

Z. Han, J. Orozco, Indacochea, J. E., & Chen, C. H. (2010). Resistance Spot Welding: A Heat Transfer Study - Real and simulated welds were used to develop a model for predicting temperature distribution Welding Research Supplement, May, 363-371.

Uzkut, M., Ünlü, B. S., Yilmaz, S. S., & Akdağ, M. (2010). Friction Welding And Its Applications In Today’s World. Paper presented at the 2nd International Symposium on Sustainable Development, Sarajevo. Material Science, Corpus ID: 3584266

Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P. and Dawes, C.J. (1991) International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8.

El-Danaf, E. A., & El-Rayes, M. M. (2013). Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions. Materials & Design, 46, 561-572.

Sonne, M. R., Tutum, C. C., Hattel, J. H., Simar, A., & de Meester, B. (2013). The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. Journal of Materials Processing Technology, 213(3), 477-486.

Cao, X., & Jahazi, M. (2011). Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Materials & Design, 32(1), 1-11.

Chowdhury, S. M., Chen, D. L., Bhole, S. D., & Cao, X. (2010). Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch. Materials Science and Engineering: A, 527(21–22), 6064-6075.

Buffa, G., Fratini, L., & Micari, F. (2012). Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. Journal of Manufacturing Processes, 14(3), 289-296.

Kitamura, K., Fujii, H., Iwata, Y., Sun, Y. S., & Morisada, Y. (2013). Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V joints. Materials & Design, 46, 348-354.

Bozkurt, Y., Uzun, H., & Salman, S. (2011). Microstructure and mechanical properties of friction stir welded particulate reinforced AA2124/SiC/25p-T4 composite. Journal Of Composite Material, 45, 2237-2245.

Sharifitabar, M., & Nami, H. (2011). Microstructures of dissimilar friction stir welded joints between 2024-T4 aluminum alloy and Al/Mg2Si metal matrix cast composite. Composites Part B: Engineering, 42(7), 2004-2012.

He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1-66.

Baskoro, A. S., Erwanto, E., & Winarto, W. (2011). Monitoring of molten pool image during pipe welding in gas metal arc welding (GMAW) using machine vision. In Proceedings of the 2011 International Conference on Advanced Computer Science and Information Systems, Jakarta, Indonesia, 17–18 December 2011; pp. 381–384.

Wu, C. S., Wang, L., Ren, W. J., & Zhang, X. Y. (2014). Plasma arc welding: Process, sensing, control and modeling. Journal of Manufacturing Processes, 16(1), 74-85.

Piccini, J., & Svoboda, H. (2012). Effect of the Plasma arc Welding Procedure on Mechanical Properties of DP700 Steel. Procedia Materials Science, 1, 50-57.

A, R. R. S. (2007). Fudamental of Practice of Plasma Arc Welding: Artilzer San Pablo.

Erdős, G., Kemény, Z., Kovács, A., & Váncza, J. (2013). Planning of Remote Laser Welding Processes. Procedia CIRP, 7, 222-227.

Jager, M., Humbert, S., & Hamprecht, F. A. (2008). Sputter Tracking for the Automatic Monitoring of Industrial Laser-Welding Processes. Industrial Electronics, IEEE Transactions on, 55(5), 2177-2184.

Alippi, C., Braione, P., Piuri, V., & Scotti, F. (2001). A methodological approach to multisensor classification for innovative laser material processing units. Paper presented at the Instrumentation and Measurement Technology Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE.

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K. (2016). Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning. Mechatronics.

Schroth, G., Stork, I., Wersborg, G., & Diepold, K. (2009). A cognitive system for autonomous robotic welding. Paper presented at the Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on.
Ancona, A., Spagnolo, V., Lugarà, P. M., & Ferrara, M. (2001). Optical sensor for real-time monitoring of CO2 laser welding process. Applied Optics, 40(33), 6019-6025. doi: 10.1364/AO.40.006019

Desmaison, O., Bellet, M., & Guillemot, G. (2014). A level set approach for the simulation of the multipass hybrid laser/GMA welding process. Computational Materials Science, 91, 240-250.

Alam, M. M., & Kaplan, A. F. H. (2012). Analysis of the Rapid Central Melt Pool Flow in Hybrid Laser-Arc Welding. Physics Procedia, 39, 853-862.

Lamas, J., Frostevarg, J., & Kaplan, A. F. H. (2015). Gap bridging for two modes of laser arc hybrid welding. Journal of Materials Processing Technology, 224, 73-79.

Naffakh Moosavy, H., Aboutalebi, M.-R., Seyedein, S. H., Goodarzi, M., Khodabakhshi, M., Mapelli, C., & Barella, S. (2014). Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys. Optics & Laser Technology, 57, 12-20.

Shakil, M., Tariq, N. H., Ahmad, M., Choudhary, M. A., Akhter, J. I., & Babu, S. S. (2014). Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints. Materials & Design, 55, 263-273.

Pereira da Costa, A., Cocchieri Botelho, E., Leali Costa, M., Eiji Narita, N., & Tarpani, J. R. (2012). A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications. Journal of Aerospace Technology and Management, 04(3), 255-265.

Ryberg, A., Ericsson, M., Christiansson, A. K., Eriksson, K., Nilsson, J., & Larsson, M. (2010). Stereo vision for path correction in off-line programmed robot welding. Paper presented at the Industrial Technology (ICIT)

Bajic, D., Kuzmenko, G. V., & Samardzic, I. (2013). Welding of Rails with New Technology of Arc Welding. Metalurgija, 3, 399-402.

Rosado, T., Almeida, P., Pires, I., Miranda, R., & Quintino, L. (2008). Innovations in Arc Welding. Proceedings of 5. Congresso Luso-Moçambicano de Engenharia, Maputo, 2-4 September 2008
.
Yapp, D., & Blackman, S. A. (2004). Recent developments in high productivity pipeline welding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26, 89-97.

Bilici, M. K. (2012). Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene. Materials & Design, 35, 113-119.

Paoletti, A., Lambiase, F., & Di Ilio, A. (2015). Optimization of Friction Stir Welding of Thermoplastics. Procedia CIRP, 33, 562-567.

Mendez, P. F., & Eager, T. W. (2002). New Trends in Welding In the Aeronautic Industry. Paper presented at the New Trends in Welding In the Aeronautic Industry, Bilboa, Spain.

Malik, G. A. K. (1986). Manufacturing Science: The University of Michigan.
Klein, R. J. (2010). Welding: Processes, Quality, and Applications (Mechanical Engineering Theory and Applications).

Kim, I.-S., Son, J.-S., & Yarlagadda, P. K. D. V. (2003). A study on the quality improvement of robotic GMA welding process. Robotics and Computer-Integrated Manufacturing, 19(6), 567-572.

Boekholt, R. (2000). the Welding Workplace: Technology Change and Work Management for a Global Welding Industry: Woodhead Publishing.

Chen, S. B., & Lv, N. (2014). Research evolution on intelligentized technologies for arc welding process. Journal of Manufacturing Processes, 16(1), 109-122.
Published
2024-06-30
How to Cite
Buang, A. S., Abu Bakar, M. S., & Rohani, M. Z. (2024). A Review Of Trend Advanced Welding Process And Welding Technology In Industries . International Journal Of Technical Vocational And Engineering Technology, 5(1), 133-145. Retrieved from https://journal.pktm.com.my/index.php/ijtvet/article/view/103